Colloidal ribbons and rings from Janus magnetic rods.

نویسندگان

  • Jing Yan
  • Kundan Chaudhary
  • Sung Chul Bae
  • Jennifer A Lewis
  • Steve Granick
چکیده

Dipolar particles are fundamental building blocks in nature and technology, yet the effect of particle anisotropy is seldom explored. Here, we fabricate colloidal silica rods coated with a hemicylindrical magnetic layer to satisfy multiple criteria: nearly monodisperse, easily imaged and magnetic interaction that dominates over gravity. We confirm long-predicted features of dipolar assembly and stress the microstructural variety brought about by shape and constituent anisotropy, especially by extrapolating knowledge learned from literal molecules. In this colloidal system, we describe analogies to liquid crystalline deformations with bend, splay and twist; an analogy to cis/trans isomerism in organic molecules, which in our system can be controllably and reversibly switched; and a field-switching methodology to direct single ribbons into not only single but also multiple rings that can subsequently undergo hierarchical self-assembly. We highlight subtle material issues of control and design rules for reconfigurable dipolar materials with building blocks of complex shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing and investigating structural and magnetic properties of ribbons Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) in amorphous and crystalline states

In this study, for the first time, cobalt base ribbons were made by adding two different amounts of tungsten with Co67.7Fe4W0.8Si16.5B11 and Co66.5Fe4W2 Si16.5B11 compounds by melt spinning in the water. The pattern of  X-ray diffraction taken from these ribbons shows that these magnetic ribbons are amorphous. By using thermal analysis curves, taken from the ribbons, crystallization temperature...

متن کامل

Colloidal superstructures programmed into magnetic Janus particles.

By engineering thin magnetic films onto homogeneous colloidal particles, various crystalline lattices are induced from simple magnetic Janus spheres. In situ formation of dicolloids amplifies the diversity of achievable dynamic structures. The competition between shape anisotropy and dipole orientation generates mesoscopic isomerism. This opens design space for anisotropic building blocks for s...

متن کامل

Janus colloidal matchsticks.

We fabricated chemically and shape-anisotropic colloids composed of silica rods coated with gold tips using a multistep process involving electric-field alignment and crystallization, microcontact printing, and selective metallization. Through direct observation, we found that these "Janus matchsticks" self-assemble into multipods (bi-, tri-, and tetrapods) of varying coordination number and pa...

متن کامل

A Study of Structure and Magnetic Properties of Low Purity Fe-Co-Based Metallic Glasses

This paper is related to the evaluation of the possibility of using ferroalloys for the production of conventional (CMGs) and bulk metallic glasses (BMGs) as well as determining their magnetic properties. The structure and magnetic properties of Fe-Co-based CMGs and BMGs prepared from ferroalloys and pure elements, were studied. The CMGs and BMGs were in the form of ribbons and rods, respective...

متن کامل

Cilia-mimetic hairy surfaces based on end-immobilized nanocellulose colloidal rods.

We show a simple method toward nanoscale cilia-like structures, i.e., functional hairy surfaces, upon topochemically functionalizing nanorods of cellulose nanocrystals (CNCs) with thiol end groups (CNC-SHs), which leads to their immobilization onto a gold surface from one end, still allowing their orientational mobility. CNCs having a lateral dimension of 3-5 nm and length of 50-500 nm incorpor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013